
A Simple Expandable Plug-in Architecture - 1

A Simple Expandable Plug-in Architecture

By Ron Davis

This paper discusses issues having to do with plug-in architectures and possible solutions

to those problems. It presents a Simple Expandable Plug-in Architecture(SEPA) that has

many of the benefits of more complicated commercial solutions.

Introduction:

There are two kinds of plug-ins which serve
two different purposes. The first is what I call a
linkable plug-in. The purpose of these plug-ins
is to allow others to implement some
functionality of a program without explicit
knowledge of the internals of the app. For
example, a word processor might want the
ability to edit pictures in it, but not want to
implement this functionality inside the
application. They could define a method of
communicating the needed information to a
plug-in and have someone else implement the
plug-in as a separate code fragment. Then the
plug-in is weak linked into the application.

The other kind of plug-in I call a dynamic plug-
in, for lack of a better term. The purpose of
dynamic plug-ins is to allow other people to
write multiple implementations of a specific
functionality. A screen saver, such as After
Dark, is the ultimate example of this. People
write plug-ins which implement animations.
Each plug-in performs the same functionality,
but in different ways. They are each opened
and called at run time, and not linked into the
main application.

This paper focuses on dynamic plug-ins. What
a smart programmer wants in such a plug-in is
something flexible, easy to implement, and
compatible across revisions of the application.
This paper will show a way of accomplishing
this.

Through out the paper we will use as an
example a screen saver like program. You will
find the code for this program in the
accompanying source archive.

OS implementation

SEPA uses shared libraries for its plug-ins. It
ignores 68K, though it could easily be adapted
to 68K code resources.

Shared libraries are in a way a plug-in, but are
really intended to be linked into the application
and not dynamic plug-ins. They are good at
segmenting one piece of functionality and
moving it out of the application, but they are
poor at having multiple implementations of the
same functionality.

It will be assumed the reader knows how to
create a shared library project in CodeWarrior.
There will also only be the barest discussion of
how to load and call these libraries. The
accompanying source can serve as a basic
introduction to how to do this.

SEPA is also based on C++ and requires a
knowledge of polymorphism and pure virtual
base classes.

A Simple Expandable Plug-in Architecture - 2

Plug-in Basics

Let’s start with our screen saver example. For a
plug-in to implement the drawing of a screen
saver it needs a number of functions called.
There are two kinds of information we want to
pass back and forth to the plug-in. One is
generic information about the plug-in itself and
the other is instruction for drawing.

These are the drawing routines:

GetPluginInformation

Called when the plug-in is loaded to get
information about it, such as the name
of the plug-in.

Initialize()

Called by the screen saver right before it
starts using the plug-in for drawing. In
the screen saver case it is called when
the screen is blanked after the waiting
period.

DrawFrame()

Tells the plug-in to draw a frame in the
animation.

Terminate()

The screen saver is going away, stop
drawing and clean up.

SetDrawingRect(Rect inRect)

Called early on to tell the plug-in the
bounds of where it should draw.

These are the plug-in information routines:

GetPluginName(char* outName)

Simply returns the name of the plug-in
for display.

GetPluginVersion(short* outVersion)

Returns a version number for the plug-
in.

Calling the functions in a code fragment.

A traditional plug-in would be a shared library
which implements these routines and exports
them. Then the application would use CFM to
get a pointer to these routines and call them via
the pointer.

There are a couple of drawbacks to this
approach. First, it is cumbersome to implement.
You have to plan for exporting of all the
relevant functions, and you have to jump
through the CFM hoops to get the functions to
call. Since there are multiple plug-ins that
implement the same functions you can’t just
link against them.

Secondly, I hate making function calls via proc
pointers, and want to keep it to a minimum.

Interfaces.

What if you could implement your plug-in as a
simple C++ object and call its functions just like
you call any C++ function? It can be done, by
implementing a simple CFM API that is 100%
reusable from plug-in to plug-in.

What we are going to do is create two things, a
single function to export from the CFM code
fragment and some pure virtual base classes.
The CFM export will be the minimum needed
to get pointers to classes that implement the
virtual base classes. This export will be the
same one used in every plug-in using SEPA, no
matter what the application.

Before we define what the exports need to be,
let’s discuss the C++ objects we are going to
create. One of the cool things about a C++
object is you can call the functions of one object
just like they were from another object. For
instance, if you have an object foo:

class foo
{
public:

foo();
virtual function1() = 0;
virtual function2() = 0;

};

A Simple Expandable Plug-in Architecture - 3

Then you can declare a subclass of this
function:

Class bar: public foo
{
public:

bar();
function1();
function2();

}

You don’t even need to implement the methods
in foo. You can just promise that the subclasses
will. This a pure virtual base class. It's pure
because none of the methods are defined. An
interface is a pure virtual base class.

So for our plug-in we declare interfaces in
headers that are shared by the plug-in and the
application. Then the application asks the plug-
in for a pointer to a C++ object that implements
the interface. Then the application can call the
functions in the interface and it will magically
call into the plug-in’s implementation of those
functions.

This is the core of SEPA.

So given each plug-in in SEPA needs to be able
to supply interfaces on demand, what do we
want each plug-in to export?

Basically we need a way to ask for a pointer to a
specific C++ object that implements a certain
interface from a plug-in. These pointers to
objects are called Interface Pointers. Remember
a plug-in might implement more than one
interface. In our example it will have an
interface to handle drawing and one to handle
plug-in information. So we need a way to
differentiate interfaces. The easiest way to do
this is to give each interface a unique ID. In
SEPA we’ll use a simple long, defined as a
constant in the header containing the interface
definition.

const unsigned long IPluginInfo_ID
 = 'PInf';

const unsigned long IPluginDraw_ID
 = 'PIdw';

Now that we can identify an interface it is
simple to define an export routine that gives us
an interface pointer. We’ll call it GetInterface

Void* GetInterface(unsigned
long inIntfID);

The problem with this routine is to you have to
use a proc pointer call every time you want an
interface, and you know how I feel about doing
that. So how do we get rid of proc pointer
function calls? We define an interface. What
I’ve done is create an object that returns
interface pointers. I call it CInterfaceProvider,
and it has one function you can call to get an
interface pointer.

OSErr CInterfaceProvider::
GetInterfacePointer(unsigned long
inID, void** outInterfacePtr)

There is a simple C routine you call on each
plug-in to get a pointer to this
CInterfaceProvider object. It is defined in the
file PluginExports.c.

IInterfaceProvider*
GetInterfaceProvider()

It is the only routine that is exported.

Now look inside
CInterfaceProvider::GetInterfacePointer. There
is a simple switch statement with each
implemented ID and a call to new on the
implementing object to be returned.

This is the simplest interface for plug-ins. It
assumes the application knows about all of the
interfaces it can call on the plug-in or at least
makes sure it actually gets a valid pointer back.

Backward compatibility between plug-in
versions

What happens when the next version of your
program comes out? Your users have screamed
for the ability to handle keyboard input, but

A Simple Expandable Plug-in Architecture - 4

your interfaces only handle drawing and info.
Also, the plug-in developers have asked to
know what bit depths they can draw in, but
your API doesn’t give them this information.

In a traditional plug-in you would have to
define new function in the CFM API or modify
the ones that were there. Afterwards none of
the 1.0 plug-ins work with version 2.0 or at least
there is a bunch of duplication in the API to
support them. And no one even gives a
thought to those people who don’t upgrade to
version 2.0 but download some 2.0 plug-ins.
Can we make these new plug-ins work for
them?

With SEPA the answer is yes. We can easily
add the new keyboard interface to pass on
keyboard input. If we detect a 1.0 plug-in and
ask it for the IKeyboard interface, it will return
null, and the app won’t call those routines.

Talking both ways.

The cleanest way to talk to the application from
the plug in is to use interfaces. We get all of the
benefits of interfaces by doing this. Since we are
now dealing with getting an interface from an
application instead of a shared library, we can’t
use CFM to get the GetInterfaceProvider()
routine.

Instead what we do is add a method to the
CInterfaceProvider interface that lets the
application tell the plug-in about its
CInterfaceProvider object.

Conclusion

This is just the tip of the iceberg for working
with plug-ins. There are a lot of things you
could add to it. Hopefully this will help you
create a simple, easy to implement, and easy to
use plug-in architecture for your applications.

